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degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence
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the midway, or even further inward on purpose, of the previous no-obstacle optimal
trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the
minimum-time motion successfully avoids the obstacle. The minimum-time is longer for
the obstacle avoidance cases than the one without obstacle. The obstacles avoidance
scheme can deal with multiple obstacles in any ellipsoid forms by using artificial
potential fields as penalty functions via distance functions. The method is promising in
solving collision-free optimal control problems for robotics and can be applied to any
DOF robotic manipulators with any performance indices and mobile robots as well.
Since this method generates optimum solution based on Pontryagin Extremum
Principle, rather than based on assumptions, the results provide a benchmark against
which any optimization techniques can be measured.
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Collision-free Optimal Motion Planning

Jason S. Wong (previously known as Jyhshing Jack Wang)

Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of
sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic
manipulator are demonstrated to show the excellence of the optimization technique and obstacle
avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous
no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and
the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle
avoidance cases than the one without the obstacle. The obstacles avoidance scheme can deal with
multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance
functions. The method is promising in solving collision-free optimal control problems for robotics and can
be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since
this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on
assumptions, the results provide a benchmark against which any optimization techniques can be
measured.

1. Introduction

The problem of increasing productivity, automated manufacturing, and
performing complex tasks in hazardous or remote environments can be solved
by robotic systems. Such systems have been applied to a wide variety of
industries which includes spray painting, welding, assembling, material
handling, highly risky work and remote control jobs. As pointed out by
Holcomb and Montemerlo [1] and Lerner [2], remote control robotic systems
will be developed in the future space stations. Also as well-known, with the
demand of increasing productivity and industrial automation, the problem of
controlling the robotic manipulators has received a great deal of interest in the
field of automated manufacturing.

1.1 Research Objectives

One of the focal points in robot design lies in the computation and control
of the motion of the manipulator. In order to make sure that the manipulator is
able to execute a special task most efficiently for human beings, it is important
that the manipulator performs from initial states to designated final states in
an optimal way under collision avoidance concern. Control on robotics can be
separated into two major categories: 1) trajectory planning, 2) trajectory
tracking. Various optimal controllers need to be devised in the trajectory
tracking problems which are not the subjects in this article. Trajectory planning
is not only the determination of the path of the end effector. Trajectory
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planning generates a specified motion of time history from initial states to final
states. Motion planning does not necessarily require optimization techniques
but extra excursion of the robot is just not cost-efficient and can cause more
potential collision problems. Obviously, the minimum-time trajectory is of
particular interest since the productivity in automation is maximized. Various
performance goals, for example: distance, energy or time-energy combination,
are also applicable. Various concepts for the study of optimal control of robotic
manipulators have been studied for this purpose.

1.2 Previous Work

One of the pioneered work is done by Kahn and Roth [3]. The highly
nonlinear manipulator dynamical equations of motion are linearized, an
approximate bang-bang solution has been developed to the suboptimal
feedback control problem.

Gilbert and Johnson [4] have developed a path planning scheme in which
the obstacles are avoided via an infinite penalty function generated from
distance function. In their study, the nonlinear dynamic equations are
approximated by linear subspace functions which are chosen as piecewise
polynomial splines. In their examples, distance constraints are violated when
spline knot interval sections equal to one; the payload object is made strictly
convex by approximating its boundary by arcs of certain curvature; obstacles
are assumed to be convex sets; the complex distance finding minimization
problem within the optimal control problem is not fully described. In the
optimization technique, more than one optima can be drawn at the same case.

Based on Pontryagin extremum principle, the time-optimal motions of
various types of robotic manipulators have been investigated by Geering,
Guzzella, Hepner and Onder [5] as classified by cylindrical, spherical robots, and
a robot with horizontal articulated arm with two links. In the analysis of the
time-optimal control problem, the bang-bang control solution satisfies the
Pontryagin extremum principle and the study has been made for
unconstrainted trajectories. In their examples, two links intercross each other
in the planar two-link manipulator.

Due to the difficulty of highly nonlinear robot mathematical model, a
near-optimal control algorithm based on Pontryagin extremum principle and
Riccati formulation has been presented by Kim, Jamshidi and Shahinpoor [6].
The algorithm reduces the original nonlinear equation set into a linear one by a
parameter sensitivity method and P-D controller is used to solve the linearized
model.

Ozaki and Mohri [7] has developed the study of collision-free joint
trajectories along a given path with some physical constraints such as
manipulator dynamics, obstacles avoidance, joint velocities and input torques
by formulating artificial potentials into the planning problem for constraints
using linear programming algorithm to minimize the error between present
and desired trajectory, in which, the nonsmooth time functions were
approximated by cubic spline functions.
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The technique of dynamic programming has also been a popular solution
method to many investigators in the field of robotic manipulators research.
Based on dynamic programming, Vukobratovic and Kircanski [8] have
determined the energy-optimal velocity distribution of the manipulator end-
effector for a prescribed path in the workspace subject to the forces/torques
constraints. The given traveling time needs to be discretized in their study.

Singh and Leu [9] have formulated and solved the optimal trajectory
planning as an optimal control problem by a path parameterized method of
dynamic programming under the constraints of the joint forces/torques and
velocities. Bang bang control has been generated for minimum time problems
without obstacles avoidance concern.

In order to implement dynamic programming approach, Shin and McKay
[10] have studied trajectory planning of robotic manipulators using parametric
function and its derivative to reduce dimensions in state space which finds the
positions, velocities, accelerations, and torques of the problem by minimizing
the cost of the parameter of moving a robotic manipulator along a specified
geometric path subject to input torque/force constraints without obstacle
avoidance concern. Along a pre-selected geometric path, for quadratic velocity
bounds, and piecewise analytic geometric path constraints, the minimum-time
control problem has been studied by Shin and McKay [11] with the phase-plane
techniques in Cartesian space which has to be converted into joint space by
interpolation. Under the assumption that the path is given as parameterized
curve, they have also determined a near-minimum time geometric path for the
study described above which minimizes approximate lower traversal time
bounds using maximum velocity bounds [12]. Their techniques are limited by
parameterization.

Bobrow, Dubowsky, and Gibson [13] have studied the problem of
minimum-time trajectories along arbitrary pre-planned spatial paths by a
special technique in which the actuator torque bounds are assumed to be
functions of the robot's current position and velocity. This technique cannot
handle the case when the feasible regions in the phase plane are not simply
connected. The idea of the time-optimal solution is based on choosing the
maximum acceleration/deceleration to make velocity as large as possible at
every point without violating constraints. The difficulty is finding multiple
switching points for time-optimal problems. Dubowsky, Norris and Shiller [14]
have devised a time optimal trajectory planning scheme with obstacle
avoidance consideration via a CAD approach in which the minimum distance to
obstacles is found from software OPTARM II by a table of various geometric
shape. The penalty function for obstacle avoidance needs to have a
characteristic of more effective weighting and dramatic steepness. The
technique cannot be easily extended to solving optimal trajectory planning for
other performance indices and constraints. Based on the same assumption,
Rajan [15] has devised a parameterized path method for the minimum-time
problem in which the cubic spline paths are parameterized and optimized
locally by an iterative scheme. The optimization procedure stops until the
minimum-time path comes close enough to the previous path while using
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Bobrow's algorithm for inner minimization and varying the path for outer
minimization. The algorithm cannot be effectively applied to the planar
movements of a manipulator with obstacles in the workspace. The weak points
of the algorithm are on the premises that the minimum time path is smooth
and a smooth curve is well approximated by splines.

Sahar and Hollerbach [16] have devised a method based on state-space
search tree representing all possible solutions, and searching for the best one
by using a Symbolics Lisp Machine for time-minimum criterion. The algorithm
is a logical approach but not a mathematical approach which is not suitable for
routine off-line trajectory planning due to the complexity of computation.

Luh and Lin [17] have devised a kinematical approach which assumes the
path consists of a sequence of Cartesian straight line segments and constant
limits on Cartesian velocity and acceleration are known a priori without
considering the dynamics of the arm.

Weinreb and Bryson [18] have presented the Adjustable Control-
Variation Weight (ACW) algorithm for the minimum-time control of a two-link
robotic arm through choosing controls subject to the actuator constraints. In
their examples, the two links of the planar manipulator intercross each other.
Meier and Bryson [19] have developed an algorithm for solutions of time-
optimal control problem of a two-link planar manipulator which contains
solutions for two-point boundary value problem of constrainted motion
between two endpoints.

Zhang and Wang [20] have investigated a collision-free time-optimal
control problem of a two-link planar robotic manipulator by applying the
method of global linearization transformation in joint space configuration. As a
result, the nonlinear equations of motion are transformed into an equivalent
linear model and an approximate explicit expression has been obtained for the
case of minimum-time control of a two-link planar robotic manipulator with
two-dimensional planar geometrical obstacle avoidance. In their example,
radius of the circle obstacle is not shown.

Bobrow [21] has continued the study of optimal path planning using
minimum-time criterion with obstacles avoidance consideration in which the
actuator torque bounds are assumed to be functions of the robot's current
position and velocity, where the Cartesian path of the end-effector is
represented with uniform cubic B-spline polynomials. The obstacle avoidance is
enforced by ensuring the distance between the end-effector and the obstacle
which was evaluated by stepping small increments of the path parameter.

Wang [22] has devised the numerically approach of using sequential
gradient restoration algorithm to solve Bolza classical optimal control problem
on robotics without linearization or parameterization, including the analytical
time-optimal solutions of a two-link manipulator and/or actuator constrainted
cases, in which the implementation can be extended into obstacle avoidance
consideration.

1.3 Overview
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We can see that numerous attempts have been made to find collision-free
optimal motion of a robotic manipulator without great success. All of the
aforementioned investigations are limited in one way or another.

Collision-free optimal control problems for robotic manipulators are
difficult due to the two-point boundary-value problem which involves, in
addition to the optimality conditions, the kinematical and highly nonlinear
dynamical equations of the system, the obstacle constraints, the limits imposed
on controls, and the satisfaction of terminal conditions. Generally speaking,
analytical solutions for classical optimal control problems with equality and/or
inequality constraints are not possible. Therefore, numerical method is
resolved. Numerical methods and computer routines are available nowadays
ranging from simple integration to TPBVP and optimization at a low price [23].

To solve constrainted optimal control problems, a restoration phase is
needed at the end of the gradient phase [24]. The collision-free motion planning
problems of robotics can be formulated as a classical optimal control problem
and solved by sequential gradient restoration algorithm [25]. Collision can be
avoided by continuously controlling the closest point on the arm to the
obstacles using virtual potential fields as penalty functions via distance
functions [26].

1.4 Present Modeling

As pointed out in recent research, owing to the difficulty of solving
TPBVP and highly nonlinear dynamic equations, the classical optimal control
problem is mostly approached by approximation (linearization,
parameterization, modification) which more or less replaces the original
optimal control problem into the assumed one. As in those study where the
nonlinear dynamic equations or the two-point boundary value problems are
linearized or parameterized, the solutions generated based on those
assumptions are not necessarily good approximations to the original ones. The
intention of this research is to present a numerical approach for determining
the collision-free optimum motion of robotic manipulators, a method to solve
classical optimal control problem without any modification, linearization or
simplification. Solutions including robot positions, velocities, accelerations and
force/torque in both Cartesian space and joint space which satisfies the
Pontryagin extremum principle are obtained by solving the manipulator
kinematical and dynamical equations with optimality conditions. For given
initial and final conditions, under the physical conditions imposed on control in
joint space and obstacles constraints, the continuous time-history of the
positions, velocities, accelerations, torques/forces and the optimal collision-free
motion of a robotic manipulator in minimum time are determined.

Applications of sequential gradient restoration algorithm occur in various
branches of science and engineering. With particular regards to aerospace
engineering, various problems of coplanar and noncoplanar, orbital and
suborbital space flight [27, 28, 29] and atmospheric flight in a windshear [30,
31, 32] have been solved by the sequential gradient restoration algorithm. The
same technique has been successfully employed in the thermofluid science [33,
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34]. Also, optimal safe landing of a helicopter in autorotation has been studied
using sequential gradient restoration techniques [35]. In general, sequential
gradient restoration algorithm has proven to be a very promising algorithm in
solving engineering optimal control problems [36, 37].

1.5 Advantages over Existing Techniques

To solve collision-free optimal control problems on robotics with
constraints, we need a numerical method which has the following advantages:
1) able to solve TPBVP which is essentially the core of the problem [6, 8, 10, 11,
12, 13, 14, 15, 21]: In fact, TPBVP can be solved by shooting method and
relaxation method or method of particular solutions. TPBVP is involved in the
first-order exact optimality conditions derived from calculus of variation.
2) able to solve highly nonlinear dynamic equations without linearization,
parameterization or simplification [3, 4, 6, 7, 10, 11, 12, 17, 20, 21]: Any
modification by linearization or simplification directly or indirectly replaces the
original problem. The drastic approximation leads to significant error and
unsatisfactory, unknown effect to the optima and the obstacle avoidance. For
example, a collision-free optimal solution can be declared only when there is
not another more optimal solution.
3) able to solve any robotics formulation regardless number of joints or DOF
[15, 17, 18, 19, 20]: A technical approach should not be limited by the number
of joints or DOF of robotics. Any dynamic systems can be formulated from state
functions point of view and solved as control systems regardless number of
dimensions.
4) able to avoid the obstacles toward optimization direction without any
unnecessary excursion [5, 7, 8, 9, 14, 15, 20, 21]: Collision avoidance should be
achieved in a most efficient way, in terms, an optimal way, without requiring
extra journey of the robot arm. The weighting effect and clearence between
trajectory and obstacle should be specified by only one parameter.
5) able to solve general constraints of robot motion planning: On trajectory
planning, we have state constraints, control constraints, or a combination of the
above. Obstacle inequality constraints, control inequality constraints can be
transformed into equality constraints.
6) able to solve any terminal conditions, any performance indices [3, 13, 14, 15,
18, 21]: In various applications, various performance indices need to be
implemented. For example, time, distance, energy or a combination of the
above. Point to point task has different initial and final states in applications.
7) has the potential to fully utilize computer power as the computer industries
grow in the near future: Several years from now, computers can be many times
faster in CPU. We don't reject any ideas which consume more CPU time than we
can afford today. On the contrary, we encourage numerical method that fully
utilizes the modern scientific computing concepts. Provided we have
infinitesimal small stepsize and infinite digits, and we have sufficient CPU time
on computers, this calculus of variation approach generates solutions which
satisfy exact necessary conditions. Sufficient conditions can also be checked.
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1.6 Drawbacks

There are certainly some drawbacks: 1) Minimum distance finding
problem within the optimal control problem at real-time is difficult. For more
complex manipulators and general obstacles, the minimum distance can be
found through optical devices and solids modeling techniques. In common
sense, a human being has to sense (by eyes) obstacles and potential of collision
before he/she can think about avoidance. 2) Due to the consumption of huge
amount of CPU time, the method is good for off-line programming but is not yet
ready for real-time, on-line applications. This can be remedied by parallel
computing techniques.

1.7 Contents

A brief description of the dynamic systems and constraints are given in
section 2. Section 3 contains the obstacles avoidance schemes. Section 4
contains the optimal control theory. Section 5 contains the sequential gradient
restoration algorithm. In Section 6, numerical examples of a two degree-of-
freedom robotic manipulator are demonstrated. The insight of collision-free
minimum-time motion are shown in captions and tables. Finally, discussion is
in section 7, conclusion and prospective research are presented in section 8.
Appendix A illustratess the kinematics of a two-link manipulator example.

2. Dynamic Systems and Constraints

The highly nonlinear dynamic equations and inequality control
constraints and/or inequality state constraints are also the main difficulties of
optimal control on robotics.

2.1 Dynamics

Under the assumption that the links are uniform rods of mass mj at the
mass center, of moment of inertia Ij, of length lj, respectively, i is the number
of the link. The gravity g is acting parallel to the negative y-axis direction. The
dynamical equations can be derived by means of Newton-Euler (Lagrange-
Euler) equations [38, 39, 40] or symbolic method [41] and expressed in general
as:

T =M(0)a + C(8,m) + G(8) (1)

where T is the vector of applied torques/forces, M (0) is the inertial matrix

terms of the manipulator, C(6,®) is the vector of centrifugal and Coriolis terms,

G (6) is the vector of gravity terms. For example, a two-link manipulator in Fig.
1. {16]:

10-7



0,1

+—>
0,0 1,0 "®
Fig.1. Two-link robotic manipulator
Link 1 of my, 1,14
Link 2 of m,, 1,, 12

M(6) I1+I2+(m1112+m2122)/4+m2l12+m3l1lpcos82 Ip+(m2122)/4+(m2l1l12c0562)/2
(0)= Ip+(malp2)/4+(mal 12c0s62)/2 Ip+(m2lp2)/4
£2)
Cl6.0)1= -m2l1125in62(w2)2/2-m21112sin82(w1)(w2)
(6,0)= m2lil2sin®z(w1)2/2
(3)
= m2lacos(01+62)/2+11(m1/2+m2)cos61
G(e)-g[ m2locos(61+62)/2 (4)

One can see that these highly nonlinear terms are functions of the joint
velocities and angles. 0j, ®j, o are relative angle, angular velocity, and angular
acceleration of link i respectively.

2.2 Control Systems and Inequality Control Constraints
Robotics dynamic system can be formulated in two ways:

2.2.1 Kinematical Formulation

Kinematical formulation is practical in most cases, specially when the
model reference dynamic parameters are not known in advance. For example,
the payload is never known ahead; or for safety reason that the inertia force
caused by acceleration of the robots shall be limited. In kinematical
formulation, the control system is as follows:
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0=w {3)

I

=0 (6)
0, o, oo are vector of state variables. Once the states in joint space of the
manipulator are known, we can compute the joint torques which are required
to balance the reaction forces/moments acting on the links. The physical
inequality constraints imposed on the robot in this study are joint acceleration
bounds [20]. With these constraints, we can limit the torques which are related
to the joint space configuration. In terms,

lal ¢ €, (7)

Via the following variable transformation, the joint acceleration can be limited
within the bounds

a = Csin(u), (8)

C is vector of upper bounds of the absolute acceleration in joint space. uis
vector of the new control variable.

2.2.2 Dynamical Formulation
If we know the model reference system in advance, in dynamical
formulation, the control system is as follows:

6=w (9)

0=M-1(T - C(6,0) - G(6) ) (10)

6, , o are state variables. In this formulation, we assume the dynamic
parameters in matrices M, C, G, are known. The matrix M is always both
"symmetric and positive definite" [39], therefore always invertible. The
physical inequality constraints imposed on the robot in this formulation are
joint torque/force bounds. With these constraints, we can limit the torques in
the actuator space configuration. In terms,

Lelle €, (11)

Via the following variable transformation, the joint torque can be limited
within the bounds

Ti= Cisin(uj), (12)
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C is vector of upper bounds of the absolute torque in actuator space. uis vector
of the new control variable.

2.3 Equality Constraints

In some cases, the end-effector has to follow a specified path, or the
orientation of the arm in the motion is specified and fixed, for example, the
robot arm is holding a flash light moving along a specified path, then, the
degree of freedom is reduced by the number of constraints. One or more state
constraints have to be added in Cartesian space, then converted into joint space.
The system is solved with replacement of the algebraic equation into the state
variables according to the constraints.

3. Obstacles Avoidance Schemes

By definition, obstacles can be avoidable or unavoidable for a fixed
configuration. Configuration has to be fixed in one task to avoid excess
excursion and changing kinematics. For examples, in Fig. 2., the obstacle is
away from the robot chassis but within the work envelope. That is considered
as avoidable. In Fig. 3., obstacles are too close to the robot and there is no space
for feasiblly moving the robot arm through the obstacle environment. This is
considered as unavoidable.

For simplicity, each obstacle is put into an ellipsoid. It is a little wasteful
to put an obstacle which is not necessarily in ellipsoid shape into an ellipse. The
advantage is the ellpsoid parameters can be changed to shapen the oral into the
figure of the obstacle without wasting too much space. Collision avoidance can
be achieved by continuously controlling the closest point on the arm to the
obstacles.

Y4

0,1

>
H

0,0 1,0
Fig. 2. Avoidable Obstacle
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Obstacle

Obstacle

0,0 1,0
Fig. 3. Unavoidable Obstacles

3.1 States Inequality Constraints
Let Q; denotes the i-th obstacle ellipsoid function among m obstacles. The
obstacle constraint is:

Qi = ap(x-x0)? + bo(x-x0)(y-y0) + co(y-yo)? + fo = 0 (13)

For collision avoidance, it is a must that at all times, for the closest point on the
arm,

Q;20 (14)

3.2 Distance Functions

Distance function Dj is defined as the function Qj(x,y) from the closest
point (x, y)on the arm to the i-th obstacle.

The position on each link can be identified by

X=x1+A(x2-X1);  y=y1+A(y2-y1) (15)

in terms, x, y are functions of a parameter A. X1, yi, X2, y2 are Cartesian
coordintes at end points of the links.

Substituting (x, y), Qi(x, y) becomes a function of parameter A. To find the
closest point from the arm to the obstacle, we take differentiation and find
minimum QQ; versus A

dQi

0. =0 (16)
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then, Djis choosen among the closest points on links to the obstacle. In most of
the avoidable obstacle cases, the closest point happens to be on the forearm at
end-effector.

When Dj; =0, it means the arm touches the i-th obstacle at the closest
point. When Djis infinitesimally small, it means the arm grazes the i-th
obstacle.

3.3 Virtual Potential Field Penalty Function Method (P1)
The penalty function P; is defined as

Si= exp(Di/aj)-1 (17)
1

Pi:S_i Srze (18)

Pi:r Si<€ (19)

a; is a small number which denotes the dramatic steepness factor between the
trajectory and the i-th obstacle where the penalty becomes active. I' is a huge
number on the edge of the precision boundary that causes computer overflow. €
is a tiny number on the edge of the precision boundary that causes computer
underflow. The merit of this infinite penalty function is by choosing a small
number aj, one can define how close the trajectory is allowed to clear the i-th
obstacle. By increasing the value aj, one can supplant the steepness of the
penalty function so the trajectory will never get into the obstacles’ forbidden
area. As D increases, P sharply decreases, i.e. almost no penalty in farther
distance; as D decreases, P dramatically increases, i.e. a sudden increase of a
penalty barrier in the goal function for obstacle avoidance. As soon as P
dominates the goal function, the problem changes from a minimum-goal one
into an obstacle avoidance one. See Fig. 4. as following:



Infinite

0.58

Zero

4 D
a=10

Fig. 4. Penalty function versus distance function diagram

For this optimal control system, we have formulated 06, o, o as state
variables x; uas control variables. For the time-optimal problem, the
performance index is:

I:n+f(: X LePr (20)

Pt =) Pio) (21)

i=1
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Boundary conditions are initial states x(0), and final states x(1) of specified
values. Once the states and the controls are computed, the required reacting

torques T can be solved from Eq. (1).

3.4 Violation Compensation Penalty Function Method (P2)
The penalty function P;j is defined as

P;i=0 D20 (22)
P;=- (D;-¢)3 D; <0 (23)

¢ is a small number. This penalty is a negative compensation function via the
distance function. The merit of this penalty function is to force the violation of
the obstacle constraint out as the negative sign indicates.

For this optimal control system, we have the same state variables and
control variables as above. For the time-optimal problem, the new performance
index is:

I=n +f01 r Py(1) dt (24)

Ps(t)= X, Wi Pji(1) (25)

i=1
Wi is a weighting factor for the corresponding penalty function.

3.5 Variables Transformation Method (P3)
For collision avoidance, by introducing a new variable z,

Qi = ag(x-x0)% + bo(x-x0)(y-yo) + co(y-yo)? + fo = z2 (26)

Z = [ ap(x-x0)X + bo(x-x0)y/2+bo(y-y0)X/2 + co(y-yo0)y 1/z
(27)

where i, 3{, are the time diffrentiation of x, y. We add one or more differential
constraints to the control system. For this optimal control system, we have
formulated 6, w, o, zas state variables x; uas control variables. For the time-
optimal problem, the performance index is: I = =

3.6 Time Scaling

10-14



In the above systems, time has been normalized from tinitial=0 to tfinal1=1
via the following transformation: t=mnt, i.e., dt=ndt. m is a parameter which
represents the final time.

3.7 Minimum Distance Problem
For the minimum-distance problem of the end-effector in Cartesian space,
the performance index can be replaced by:

I= Jl m (vx2 + vy2)1/2 dt + jl n Pg(z) dr (28)
0 0

3.8 Primal Formulation

Optimal control has the characteristic of duality [42, 43]. In this study, the
sequential gradient restoration algorithm is employed in conjunction with
primal formulation.

4. Optimal Control Theory
The optimal control problem [44] is described in general as follows:

With respect to the vectorial state variable x(t), vectorial control variable
u(t) and the vectorial parameter m, the problem of minimizing a functional

e fol f(x,u,m,0dt +[h(x,x)]o+[2(x,0)h (29)

subject to differential constraints:

X - 0(x,u,m,t) =0, 0 €1, (30)
initial conditions:

[w(x,7)]0=0, (31)
and final conditions:

[w(x,m)]1=0. (32)

where f, h, g, are scalar functions, and ¢, o, y are vectorial functions of specified
dimensions. t is a independent variable. The subscript 0 denotes the initial
point, and the subscript 1 denotes the final point.

Optimality Criteria

By introducing the Lagrange multipliers, the problem shown above can be
recast as minimizing the augmented functional J
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T=T#L (33)

subject to Eqgs. (30-32), where L is the Lagrangian functional
1 [
L= [ AT(k-otxu,m0)t + (5To)o + (WY1 (34)

The symbols A(t), o, u denote Lagrange multipliers of appropriate
dimensions associated with the constraints. The superscript symbol T denotes
the transpose of the matrix.

The first-order optimality criteria originated from Pontryagin Extremum
Principle for Eqs. (29-34) can be derived from Euler equations in calculus of
variation as:

% - £ + 0xA=0, il (35)
etk wb, 0ctel, (36)
J[| Gaomh)dt + (he+ 05000 + (e + =0, (37)
(4 g %0 0)5=0; (38)
(A + gx + yxi)1=0. (39)

In terms, we seek the functions x(t), u(t), ®# and the multipliers A(t), o, p
such that the feasibility Eqs. (30-32) and the optimality criteria Eqs. (35-39)
are satisfied to certain numerical accuracy.

5. Algorithm

The sequential gradient restoration algorithm, in either the primal
formulation or the dual formulation, is an iterative technique which is
constructed by a sequence of two-phase suboptimal cycles. Each cycle includes
a gradient phase and a restoration phase. In the gradient phase, the value of
the augumented functional is decreased in one step, while avoiding excessive
constraint violation. In the restoration phase, the value of the constraint error
is decreased in one or multiple steps, while avoiding excessive change in the
value of the functional. In a complete gradient-restoration cycle, the value of
the functional is decreased, while the constraints are satisfied to a pre-selected
degree of accuracy. Therefore, a sequence of suboptimal solutions is generated.
Each new suboptimal solution is an improvement of the previous one from the
point of view for the value of the functional to be minimized. The optimal
solution is reached when the optimality error and the constraint error are both
satisfied to a certain accuracy. Schematic diagram is shown in Fig.5.
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nominal functions to the varied functions. Under the assumption that the
displacements Ax(t), Au(t), Ax are linear with stepsize o, where o > 0; and A(t),

B(t), C denote the displacements per unit stepsize. Then the following relations
can be used for iterations:

X (t) = x(t) + Ax(t) = x(t) + ¢A(t) (40)
u(t) = u(t) + Au(t) = u(t) + aB(t) (41)
T =n+An=mn+oC (42)

Thus, each iteration of the gradient phase and the restoration phase
involves two distinct operations: (i) the determination of the direction functions
A(t), B(t), C, and (ii) the determination of the stepsize of variation a.

From (40-42) and constraint conditions (30-32), one can derive the
following relations from first order variation:

A - 0xTA - 04TB 4xTC + D(%-0) =0, 0

=t 1, (43)
(0xTA + 0z TC + D;w)g = 0, (44)
(yxTA + yzTC + Dry)1 =0, (45)

and from Eqs. (40-42) and first-order optimality criteria (35-39), one can
derive the following relations from first order variation:

}\.'Dgfx'i‘q)xx.:o, Oit

I~

1, (46)

B + Dgfu = ¢ux= 0, O

| Py

t

I~

15 (47)

1 1
C+ [ (-0rh)dt + (@50)0 + (yet1 + Dyl | fadt + (hado +(&e)1 1 =0,

(48)

(A - A + 0xo + Dghx)o =0, (49)

(A +yxp + Dggx)1 =0, (50)
where, in the gradient phase, Dg =1, D: =0, (51)
in the restoration phase, Dg =0, D=1l (52)
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The above linear two-point boundary-value problem [LTP-BVP] can be
solved for the direction functions A(t), B(t), C, by the method of particular
solutions [45, 46].

Stepsize
Eqs. (40-42) define one-parameter functions of the stepsize o. For this
parameter, the functionals I, J, P become functions of a as following:

I=1() T=T(0) P =P(a) (53)

Then, bisection technique is used for the one-dimension search to find the
stepsize, starting from reference stepsize og in gradient phase, until (i)

T(a) < T(0), P(a) < P, (54)

P« 1is a preselected number, not necessarily small; and starting from reference
stepsize or in restoration phase, until (ii)

P(a) < P(0) (55)

In a complete, successful gradient-restoration cycle, the following
condition must be satisfied or the cycle is restarted with reduced stepsize.

Ii < Ii-1 (56)

where I denotes the value of the functional (29) after current cycle. Ij.g
denotes the value of the functional (29) after the previous cycle.

Updating suboptimal solution schemes
Once the direction function A(t), B(t), C, and stepsize o are solved, the
states, the controls, and the parameters are updated according to Eqgs. (40-42).

Summary of Algorithm

Let P be the square norm of the error associated with the feasibility Egs.
(30-32), and Q be the square norm of the error associated with the optimality
criteria Eqgs. (35-39), then

1 e
P= ] N(Zo)t + Ne@)o + Nwn (57)

Q:fl Nk - fx + 0xA)dt + fl N~ 6.0 )dt
0 0
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1
#NL [ (-0t + (hr + @r0)0 + (gx + V)1 ]

+ N(-A + hx + 0x0)0 + N(A + gx + yx)1, (58)

where, N denotes quadratic norm operation.
Thus, numerical convergence for optimal solution can be declared when
Pieg, (59)

Q< ey, (60)

€1, €2 are preselected, small, positive numbers.

The algorithm is started from providing nominal functions of u(t), and .
The nominal functions can be provided arbitrarily, but good nominals help
convergence. The nominal controls are provided with a standard shooting
method of Modified Quasilinearization Algorithm, followed by solving the
nominal states based on nominal controls, to some accuracy of terminal
conditions.

Then, the restoration phase is started. Eqs. (43-45) are solved with (52)
and search of stepsize in restoration phase. The one or more iteration
restoration phase is completed only until Eq. (59) is satisfied. Then, the
gradient phase is started. Eqs. (46-50) are solved with (51) and search of
stepsize in gradient phase until Eq. (60) is satisfied for only one iteration. The
restoration phase is started again. Thus, a sequence of suboptimal solutions is
generated. Each new solution is an improvement of the previous one from the
point of view for the value of the functional to be minimized. The optimal
solution is reached when Inegs. (59-60) are both satisfied.

6. Numerical Examples

Numerical examples for time-optimal control with obstacles avoidance
schemes of a two-link robotic manipulator are shown in this section. The
numerical and analytical solutions of time-optimal control without obstacles
can be refered to [22]. The following physical parameters are taken from Asada
[46], Sahar and Hollerbach [16] and Zhang and Wang [20]. The obstacle is put on
the midway, or even further inward, of the previous no-obstacle optimal
trajectory on purpose. The algorithm can be applied to any degree-of-freedom
robots with arbitrarily given physical parameters and boundary conditions.

In joint space,

initial position (01, 62)i = (0.25, 0.35) rad.

final position (61, 62)f = (0.8208, 1.4208) rad.

initial velocity (w1, 2)j = (0.0, 0.0) rad/sec.
final velocity (01, @2)f = (0.0, 0.0) rad/sec.
acceleration bounds (Cip, C2) = (0.5, 1.0) rad/(sec)?.
gravity constant g = 9.8 m/(sec)?2.
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Link 1

mass m] = 50 kg, length 11 = 0.5 m, moment of inertia I] = 5.0 kg/(m)2.
Link 2
mass m2 = 30 kg, length I2 = 0.5 m, moment of inertia I = 3.0 kg/(m)2.

The ellipse obstacle is represented by the following equation:
Q = ag(x-x0)2 + bo(x-x0)(y-y0) + co(y-y0)2 + fo = 0; where, fg = -(19)2

The following symbols are used in the tables:

P1: Virtual Potential Field Penalty Function Method
P2: Violation Compensation Penalty Function Method
P3: Variables Transformation Method

E : Ellipse Obstacle. C : Circle Obstacle, when bg= 0

Table 1. Comparison of Obstacles Avoidance Schemes

(P1-C) (P2-C) (P3-C)
x0 (m) 0.5 0.5 0.5
yo(m) 076 076 076
0 (m) 01 .
grash & o fy 3008 TEiegh) s34 g ol
By 0 (D10, ol 48 wois T
o T il
S Y S e T gt e
e (m) s 3.0x1074 e
W o pEyioUiniicesi
minimum
time (sec) 2.914 3.071 4.337

*** denotes there is no such value for the scheme.
2.137 sec is the minimum time without obstacle avoidance.

Table 1. contains the insight of comparison between two penalty function methods and the
variables transformation method for circle obstacle (bg=0). Circle obstacle is centered at
(0.5, 0.76) of radius 0.1. Virtual potential field penalty function has only one parameter
and generates graze-by trajectory. Violation compensation penalty function is difficult to
implemente as a clear collision avoidance scheme owing to the infinite combination of two
parameters. Variables transformation method avoids obstacle successfully but is too
constrainted when the robot is away from the obstacles to generate true local optima. (Case
P1-C in Table 1. is same as P1-C2 in Table 2. and shown in Fig. 13.)
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Table 2. Comparison of Different Location of Ellipse and Circle Obstacles.

Pl (E1) (E2) (C1) (C2)

xp (m) 0.51 0.50 0.51 0.50

yo(m) o062 016 iroticr 002 Yuiasesin:
0 (m) 02 02 Bl B
0 20 T R
bo 20 20 ey ™
o 20 20 Tihtden inada
a (m) 1074 1074 1074 104

minimum

time (sec) 4.332 3.330 3.931 2.914

2.137 sec is the minimum time without obstacle avoidance.

In Table 2., the circle and ellipse obstacle avoidance are listed for side-by-side comparison.
As we see, Ellipse (r9g=0.2) is larger in size than Circle (rg=0.1). Long axis is 45 degree
clockwise oriented. Both E1, C1 have the same center location at (0.51, 0.62) and is more
close to the robot than E2, C2 which have the same center location at (0.5, 0.76). Owing to
the extra journey the obstacle avoidance causes, the bigger the obstacle or the closer the
obstacle, the longer the minimum-time is, in trajectory.

For the sake of brief, the results corresponds to the first ellipse (E1) in Table 2. are shown
in Figs. 6-11.

Fig. 6 contains the optimal trajectory in minimum time

Fig. 7 contains the joint angle profile in minimum time.

Fig. 8 contains the joint velocity profile in minimum time.

Fig. 9 contains the joint acceleration profile in minimum time.

Fig. 10 contains the torque profile in minimum time.

Fig. 11 contains the distance function profile in minimum time.

Fig. 12 contains the minimum-time trajectory which corresponds to Table 2, P1-E2.

Fig. 13 contains the minimum-time trajectory which corresponds to Table 2, P1-C2.



Table 3. Comparison of Different Radius of Circle Obstacles.

P1 (C1) (C2) (C3)

xo (m) 1.0 1.0 1.0

yo(m) 10 b adi SO
0(m) 06 T el
ST o 2 e
bo 00 T S e
T gy o
a (m) 1= 0.5x10°% 104

minimum
time (sec) 3.829 2.696 2137

(C3) obstacle is outside the previous no-obstacle optimal trajectory.
2.137 sec is the minimum time without obstacle avoidance.

In Table 3., the circle is moved to center location (1, 1). Radius of the circle is varied as (Cl,
C2, C3)=(0.6, 0.5, 0.4). In C3 case, the obstacle is outside the work envelop of the robot, so the
minimum-time for C3 is the same as the one without obstacle. The minimum-time is longer
as the obstacle is bigger in C1, C2 cases.

Fig. 14 contains the optimal trajectory in minimum time which corresponds to Table 3, Pl-
C3. Owing to the influence of the existing penalty function, there are two curves
overlapped on the trajectory. One curve is for previous optimal trajectory without obstacle
avoidance scheme, another one is optimal trajectory with obstacles avoidance scheme and
obstacle is outside the work envelop.



6.1 Severe Obstacle Avoidance
In joint space,

initial position (81, 62); = (0.349, 0.628) rad.
final position (81, 62)f = (0.497, 0.855) rad.
initial velocity (w1, 2)i = (0.0, 0.0) rad/sec.
final velocity (w1, w2)f = (0.0, 0.0) rad/sec.

The following case study shows: the arm started near the edge of one side of the obstacle
and ended near the edge of another side of the obstacle.

Table 4. Severe Obstacle Avoidance.

(P1-C) (P2-C)
x0 (m) 0.667 0.667
gofoy B T
T e 01— .
e T
L e p.pCoRoiE el
T 81—t
il Jiod odi lo X 1 LTRSS
g (m) solek 0.2x10"1
W ok 0.5x108
minimum
time (sec) 2.800 2.911

*%* denotes there is no such value for the scheme.
1.088 sec is the minimum time without obstacle avoidance.

As we see, minimum-time control is not necessarily related to minimum-distance of the
end-effector. The collision avoidance scheme has excellence to move around and avoid
severe obstacle. Fig. 15 contains the optimal trajectory in minimum time which
corresponds to Table 4, P1-C.

7. Discussion

The insights of the merit of the optimal obstacles avoidance are shown
above in Fig. 6-15. All the obstacle avoidance trajectories have the following
characteristics: 1) grazing by the obstacle. 2) trying to achieve previous no-
obstacle trajectory at near bang-bang control for minimum-time. (At least one
joint bang-bang control is the solution for minimum-time without obstacles
avoidance) 3) achieving previous no-obstacle optimal trajectory with collision
avoidance scheme in the cases of no-obstacles. 4) being able to move around
and avoid the severe obstacle.
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Virtual potential penalty function method does not cause obstacles
constraints violation or over-constrained situation, is the one and only best
method. Violation compensation method is difficult to implement owing to the
two weighting factors which causes a little obstacle constraint violation from
time to time. Variables transformation method is over-constrainted when the
obstacles are away from potential collision. This discussion matches the one in
[4] even though the implementation of penalty function is different. This
approach also illustrates the experimental results for optimization with
inequality and/or equality constraints.

As we can see from the comparison tables, the minimum-time of
collision-free optimal trajectory is relatively depended on the size and location
of the obstacles. The jerk control can be overcome by achieving a near optimal
motion in which the trajectory is farther away from the obstacle and the
minimum-time is longer.

More intensive research need to be done on minimum distance finding
through optical devises or solid modeling. Since the robot manipulators are
usually constructed by connected links, in most of the cases, we can say
obstacles avoidance for fixed configuration is equivalent to the end-effector
obstacle avoidance even though this statement is not true in general. We have
to solve end-effector obstacles avoidance before we solve other type of
problems because the object is usually on the grip.

The numerical experiments have been done on IBM AS9000 mainfraim
and VAX 8800, are also attempted to be done on Macintosh. The CPU time for
current research varies from 20 minutes (IBM) to one hour (VAX). The
accuracy also varies from machine to machine without very much difference.
As the computer industries are growing, the CPU time or accuracy is not a
problem for future scientific computation.

The numerical results are constructed by 100 cycles and 300 iterations
whichever reached first. The convergence is fast at early stages, it slows down
after the sub-optimal solutions come close to the optimal solution. To save
computation, one can set up lower limits for cycle, iteration and CPU time, so
near-optimal solutions will be generated based on Pontryagin Extremum
Principle.

8. Conclusion

In this paper, collision-free optimal motion and trajectory planning for
robotic manipulators are solved by a method of sequential gradient restoration
algorithm. Numerical examples of a two degree-of-freedom robotic manipulator
are demonstrated. The obstacle is put on the midway, or even further inward,
of the previous no-obstacle optimal trajectory on purpose. For trying to achieve
previous no-obstacle trajectory, the trajectory tangentially grazes by the
obstacle and the minimum-time motion successfully avoids the obstacle. The
minimum-time is longer for the obstacle avoidance cases than the one without
obstacle. All the numerical experiments indicate the obstacles avoidance
scheme has the same characteristics which allows the trajectory gets as close to
the optimal as possible but barely graze by the obstacle. The weighting and
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effective point of the penalty can be defined by one parameter which justify
the closeness between the trajectory and the obstacle. The trajectory will try to
achieve optimization under the obstacles barrier. This is the most outstanding
characteristic than other schemes to achieve collision avoidance and also find
the optimal motion without extra excursion.

The obstacles avoidance schemes can deal with multiple obstacles in
ellipsoid forms by continuously controlling the closest point from the arm to
the obstacle using virtual potential fields as penalty functions via distance
functions. The algorithm is very promising in solving collision-free optimal
control problems for any degree-of-freedom robotic manipulators with any
performance indices and mobile robots as well. The minimum-time motion is at
least one joint bang-bang control or near bang-bang control with obstacles
avoidance, no matter the controls are imposed on angular accelerations or on
actuator torques. The minimum-distance trajectory without obstacles is a
straight line.

Since this algorithm generates true local minimum solution based on
Pontryagin extremum principle, rather than based on approximations, the
results provide a benchmark against which any other optimization can be
measured.

The perspective research is to investigate the result of optimal solutions
for robotic manipulators when the controls are imposed on actuator constraints,
and/or with moving obstacles avoidance under different performance indices;
and model-reference adaptive optimal feedback control.

Appendix A: Kinematics of a Two-Link Robotic Manipulator

In general, the kinematics, dynamics, control and constraints study of
robot can be found in [37]. The kinematical equations are developed by
geometrical relationship between Cartesian space and joint space [38]. They can
be expressed in general as:

Forward kinematics x(t)=F1(0(t)) (61)
v(t)=F2(8(t), o(t)) (62)
a(t)=F3(6(1), o(t), a(t)) (63)

where x(t), v(t), and a(t) are vectors of positions, velocities and accelerations of
the end-effector in Cartesian space. 6(t), w(t), and a(t) are vectors of angles,
angular velocities and angular accelerations in joint space.

F are functions. For a two-link planar robotic manipulator [40] (Fig.1.):

X licosO1+l2cos(61+62)

(y ) _(llsin81+lzsin(91+92) ) (64)
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vx ) -11sin01-12sin(01+62) -l25in(01+62) Y o1 65
(vy ) licosB1+12cos(01+02) lacos(01+602) A an (63)
ax ) _ -11sinB1 -128in(01+062) o1
(ay )_ licosBO1 lpcos(01+62) A at+on
l1cos01 lacos(01+62) 66
"| 115in01 1sin(81+62) (co1+m2)2 i66)
Inverse kinematics 0(t)=G 1(x(t)) (67)
o()=G2(x(t), v(t)) (68)
a(t)=G3(x(t), v(t), a(t)) (69)

G are functions which depend on the configuration (like: elbow-down). For a
two-link robotic manipulator in elbow-down position (Fig.1.):

1>sin®
= 2 ) where, (70)

91=tan'1(§) - tan_l(_lﬁlzcosez :

x24+y2-112-1p2

o<l
62=cos"I( 21, (71)
o) 1 Iocos(81+62) I2sin(01+62)
@ | " 11l2sin@o| -l1cosB1-locos(01+02) -11sinB1-12s5in(61+62)
Vox
X (vy ) (72)

I2cos(01+62) l2sin(01+62) Yax
0t1+0tz 1112311192 -l1cos01 -11sin6 ay )
1 1112cos67 122 12
+11125in82[ -142 -1112co0s62 (o1+an)? ()

j Holcomb, L.B., Montemerlo, M.D., "The NASA Automation and Robotics
Technology Program”, Acta Astronautica, Vol. 16, 1987, pp. 11-18.

59 Lerner, E.J., "Robots on the Space Station", Aerospace America, June 1987,
pp. 42-45.
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